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Overview

The myths & realities

Moore’s Law leads to nano-scale integration

Global momentum in quantum technologies

Superposition, entanglement and all that...

What is quantum computing?

What is quantum communication?

EXAMPLE 1 - Quantum codes for mitigating quantum
decoherence

The Future?

EXAMPLE 2 - Quantum-Internet: Routing above the
clouds using quantum search algorithms

2 / 45



The Dream-Team
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The Founders of our Field c©Hanzo et al.
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Historic Preamble...

Wireless Myths &
Realities...
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A Stroll with Shannon to Next-Generation Plaza... c©Hanzo
et al.
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The Electromagnetic Spectrum
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Figure: The electromagnetic spectrum c©H. Haas

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and
L. Gyongyosi, “Wireless myths, realities, and futures: From
3g/4g to optical and quantum wireless,” Proceedings of the
IEEE, vol. 100, pp. 1853 –1888, 13 2012, Invited Paper in the
Centennial Issue 7 / 45



Moore’s Law... c©CCBY

Source: http://theconversation.com/uk/technology
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c©CCBY
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Historic Preamble...

What is Quantum
Computing...?

“I think there is a world market maybe for five computers.”
T.J. Watson, Chairman of IBM, 1943

We already have more than five quantum computers in 2018
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Quantum-Computing Meets Communications... c©Hanzo et
al.

Serial Computing Quantum Computing

Try all the keys one by one:

Time Ine cient

Resources E cient

Parallel Computing

Create as many boxes as the keys

and try all the keys in parallel:

Time E cient

Resources Ine cient

11

Try all the keys in parallel to a single box:

15

14

11 12 13 14 15 16 17 18

11

Time E cient

Resources E cient

[Hanzo et al.] Wireless Myths, Realities and Futures, Proc.
of the IEEE, 13th of May 2012, Centennial Issue, Xplore Open
Access
[Botsinis, Ng & Hanzo]: Quantum Search Algorithms,
Quantum Wireless and a Low-Complexity Maximum
Likelihood Iterative Quantum Multi-User Detector Design,
IEEE Access, May 2013, Xplore Open Access 11 / 45



The First Computers in the 1950s c©CCBY
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The First Computers in the 1950s c©CCBY
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The First Computers in the 1950s c©CCBY
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The 17-Qubit IBM Quantum Computer in 2018 c©CCBY
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The First IBM Quantum Computers in 2018 c©CCBY
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The First IBM Quantum Computers in 2018 c©CCBY
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The First IBM Quantum Computers in 2018 c©CCBY
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Superposition c©Hanzo CCBY
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Superposition c©Hanzo et al.

|1〉

|0〉

a|0〉+ b|1〉

An atom with one electron orbiting around the nucleus having two
legitimate energy levels (solid orbits). Quantum mechanics allow

the electron to be in an arbitrary superposition of these two energy
levels (dashed orbit), but when it is observed it may only be found

in one of the two legitimate orbits.
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Superposition of Qubits c©Hanzo et al.

Spinning Coin in a Black Box:

50% “Heads” AND 50%“Tails”.
Both at the same time!
Observation (by opening the box): “Heads” OR “Tails”.
Idea: Keep the coin spinning and manipulate it without
opening the box.

Coins in computing:
Classic bit: 0 or 1.
Quantum bit (Qubit): 0 or 1, or any combination of them.

Ket notation: |q〉 = a|HEADS〉+ b|TAILS〉 = a|0〉+ b|1〉,
where |a|2 + |b|2 = 1 and a, b ∈ C.
Provides any possible superposition of 0 and 1!
Observation:

|a|2 probability to observe |0〉
|b|2 probability to observe |1〉

The qubit’s state becomes the observed one with probability 1.
2 qubits: |q〉 = 0.5|00〉+ 0.5|01〉+ 0.5|10〉+ 0.5|11〉
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Motivation: Quantum Parallelism c©Hanzo et al.

Qubit: α|0〉+ β|1〉

http://abyss.uoregon.edu/ js/cosmo/lectures/lec08.html

Quantum Measurement

α|0〉+ β|1〉 |α|2−−→ |0〉
|β|2−−→ |1〉
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Quantum Communications

So, What is Quantum
Communications?
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The Chinese Micius Experiment c©CCBY
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The Chinese Micius Experiment c©CCBY
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The Russian QKD Experiment c©CCBY
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The Russian QKD Experiment c©CCBY

27 / 45



Pauli-to-Classical Isomorphism c©Hanzo et al.

CLASSICAL QUANTUM: Challenges QUANTUM: Solutions

Cloning

x → xxx

Hadamard Basis

α|0〉+ β|1〉 → α|+++〉+ β| − −−〉CHANNEL

ENCODER

0

1

0

1

(1− p)

(1− p)

p

p

Bit errors only

Bit & Phase errors

Theorem

No-Cloning

(1− p)

α|0〉 − β|1〉

β|0〉+ α|1〉

α|0〉+ β|1〉α|0〉+ β|1〉

p/3

p/3

p/3

−iβ|0〉+ iα|1〉

Entanglement

α|0〉+ β|1〉 → α|000〉+ β|111〉

DECODERMeasurement
Qubits collapse

upon measurement
Syndrome Decoding
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Quantum-Wireless Futures... c©Hanzo et al.

 

Quantum Key 
Distribution 

Ultra-Reliable 
Quantum Internet 
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Motivation: Quantum Parallelism c©CCBY

Qubit: α|0〉+ β|1〉

http://abyss.uoregon.edu/ js/cosmo/lectures/lec08.html

Quantum Measurement

α|0〉+ β|1〉 |α|2−−→ |0〉
|β|2−−→ |1〉
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Motivation: Eliminate Quantum Decoherence c©Hanzo et
al.

The Benefits of Quantum Codes

Bit Flip

Phase Flip

Quantum decoherence/noise characterized by bit and phase flips.

Quantum Error Correction Codes (QECCs) are vital for
reliable quantum computing and communication sys-
tems.
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Research Objective c©Hanzo et al.

Design efficient error correction codes for reliable quantum systems
by exploiting the underlying quantum-to-classical isomorphism.

Encoder

Channel

Decoder

Quantum

Channel

Channel
Qubits

Qubits
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1995

1999

Shor Code is a 9-qubit code correcting a single qubit.1995

Steane Code is a 7-qubit code correcting a single qubit.

1996

Laflamme Code is the ”perfect” 5-qubit code correcting a single qubit.

1996

The general formulation of syndrom-based QSCs was proposed.

1997

Toric Codes, where the qubits are arranged on a torus.

1997

Surface Codes, where the qubits can be arranged on a surface.1998

Quantum GF(4) Codes derived from classical error correction codes based on the GF(4).

1998

Quantum BCH Codes, inspired by classical BCH codes.

1999

Quantum Reed-Solomon Codes inspired by classical Reed-Solomon codes.

1999

Quantum Reed-Muller Codes inspired by classical Reed-Muller codes.

1999
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1999

2014

Entanglement was proposed for transforming the classical codes into their quantum counterparts.

2002

Quantum Convolutional Codes inspired by classical trellis-based error correction codes.

2003
Quantum LDPC Codes based on sparse graph codes, surveyed by Babar et al. in 2015

2004

Colour Codes, member of the so-called topological codes.
2006

Quantum Turbo Codes based on serial concatenated quantum CCs, surveyed by Babar et al.

2009

Hyperbolic Surface Codes

2009

Hypergraph Product Codes

2009

Quantum Polar Codes

2012

Hyperbolic Colour Codes

2013

Homological Product Codes

2014
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Pauli-to-Classical Isomorphism c©Hanzo et al.

Classical Error Correction

CHANNEL DECODER

1

ENCODER

1 1 1

Replication Measurement

No-Cloning Theorem

0 1 1 1

Measurement Destroys a Qubit
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Pauli-to-Classical Isomorphism c©Hanzo et al.

Quantum Error Correction

CHANNEL DECODERENCODER

α|0〉+ β|1〉

α|000〉+ β|111〉 α| 1 00〉+ β| 0 11〉

α|0〉+ β|1〉

We wish to determine the error without observing the qubit!!

Solution: Measure the error without reading the data.
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Pauli-to-Classical Isomorphism c©Hanzo et al.

Quantum Error Correction → Majority-Based Syndrome Decoding

Check 1: Modulo 2 addition of first and second qubits.

Check 2: Modulo 2 addition of first and third qubits.

Syndrome Checks Correction/Action

00 No Error

11 Bit error on 1st Qubit

10 Bit error on 2nd Qubit

01 Bit error on 3rd Qubit
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Pauli-to-Classical Isomorphism c©Hanzo et al.

Classical Parity Check Matrix (PCM)-based Syndrome Decoding

s = yHT = (x + e)HT = eHT

For the 3-bit Repetition code, we have:

H =

1 1 0

1 0 1


Valid codewords are (0 0 0) and (1 1 1).

Let y = (0 1 1), then:

s =
(

0 1 1
)

1 1

1 0

0 1

 =
(

1 1
)
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Pauli-to-Classical Isomorphism c©Hanzo et al.

Phase Error Correction

Encode the basis states |0〉 and |1〉 in the Hadamard basis, i.e.

|0〉 → |+ ++〉 |1〉 → | − −−〉

where we have:

|+〉 → |0〉+ |1〉√
2

|−〉 → |0〉 − |1〉√
2

Check 1: Compare the first and second qubits.

Check 2: Compare the first and third qubits.

For example, the information word |ψ〉 = α|0〉+ β|1〉 is
encoded into |ψ〉 = α|+ ++〉+ β| − −−〉. If phase error
occurs on the first qubit, we receive
|ψ̂〉 = α| −++〉+ β|+−−〉.
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Quantum coding rate rQ versus normalized minimum
distance δ for finite-length QSCs, n = 127 & n = 128

Quantum coding rate = rQ = k
n
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Results I: Optimized Quantum Turbo Code Design
c©Hanzo et al.

Design Criterion: Find the optimal inner and outer components,
which yield a marginally open tunnel between the EXIT curves of
the inner and outer decoders at the highest possible depolarizing
probability.
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Our optimized QTC operates within 0.3 dB of the capacity limit referred to as the Hashing Bound.
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Quantum-Wireless Futures... c©Hanzo et al.

 

Quantum Key 
Distribution 

Ultra-Reliable 
Quantum Internet 
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Haven’t Even Touched Upon... c©Hanzo et al.

Quantum Key Distribution;

Q-Memory, Q-Repeaters, Q-Search Algorithms;

Free-Space Optical Communications;

What can we transplant from the classical into the quantum
domain?

The Quantum-Internet Above
the Clouds Based on
Pareto-Optimization Using
Quantum-Search Algorithms
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Aircraft mobility pattern for LHR, in the European airspace
and over the North Atlantic c©Hanzo et al.

Heathrow Airport European Airspace North Atlantic

https://uk.flightaware.com/live/airport/EGLL
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