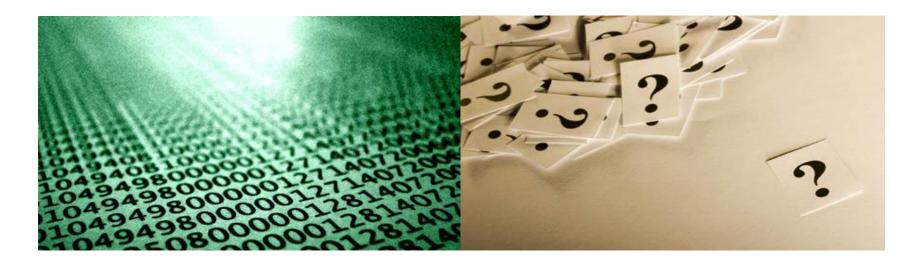


Big Data Management and Scalable Data Science: Challenges and (some) Solutions

Prof. Dr. Volker Markl http://www.user.tu-berlin.de/marklv/ http://www.dima.tu-berlin.de http://www.dfki.de/web/forschung/iam http://bbdc.berlin

volker.markl@tu-berlin.de

Data & Analysis: Increasingly Complex!



scalability

data volume too large data rate too fast data too heterogeneous Volume Velocity Variability

data too uncertain

Veracity

Data

Reporting Ad-Hoc Queries ETL/ELT aggregation, selection SQL, XQuery MapReduce

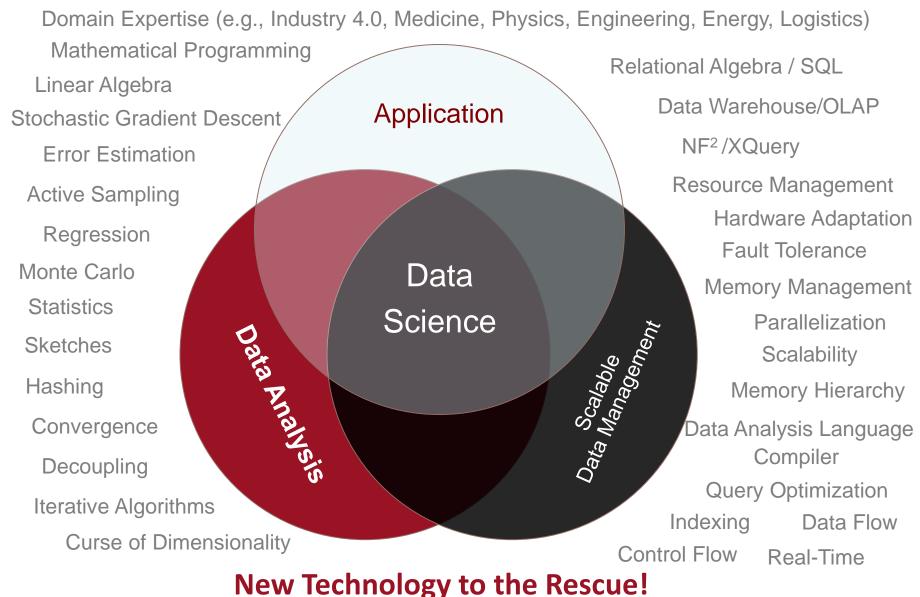
Data Mining MATLAB, R, Python Predictive/Prescriptive MATLAB, R, Python

scalability

algorithms

algorithms

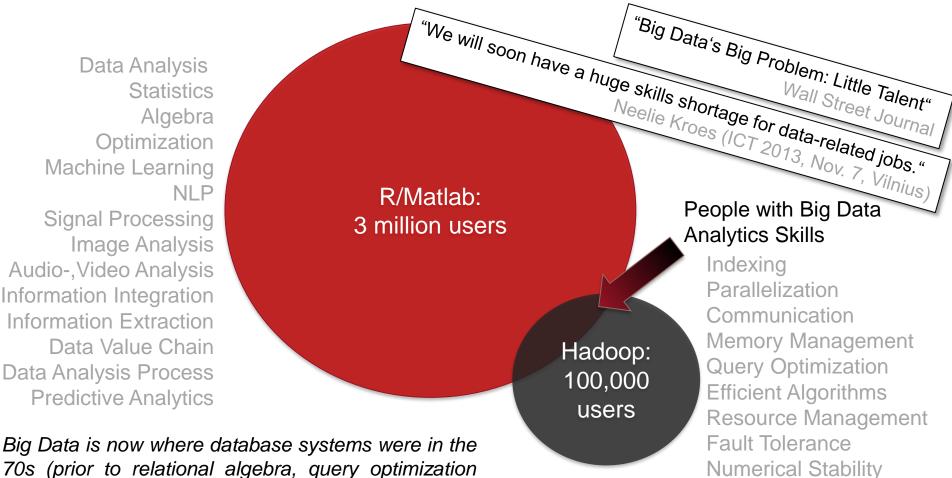
"Data Scientist" – "Jack of All Trades!"



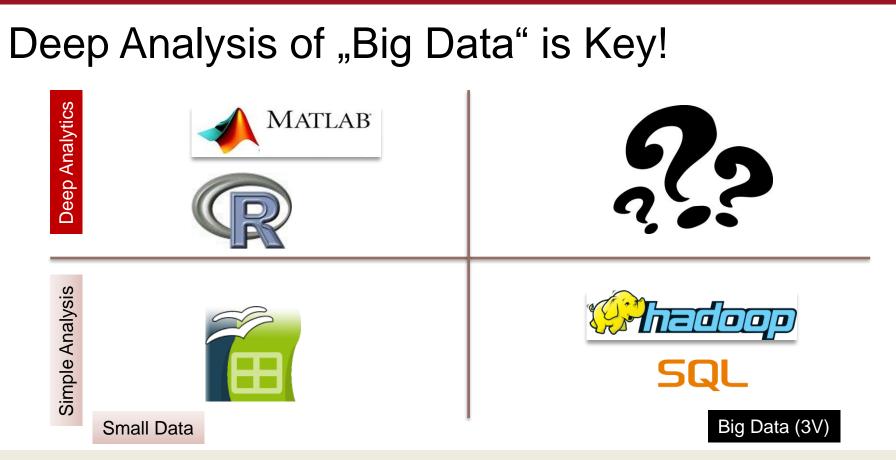
Big Data Analytics Requires Systems Programming

Data Analysis **Statistics** Algebra Optimization Machine Learning NI P Signal Processing **Image Analysis** Audio-, Video Analysis Information Integration Information Extraction Data Value Chain Data Analysis Process **Predictive Analytics**

and a SQL-standard)!

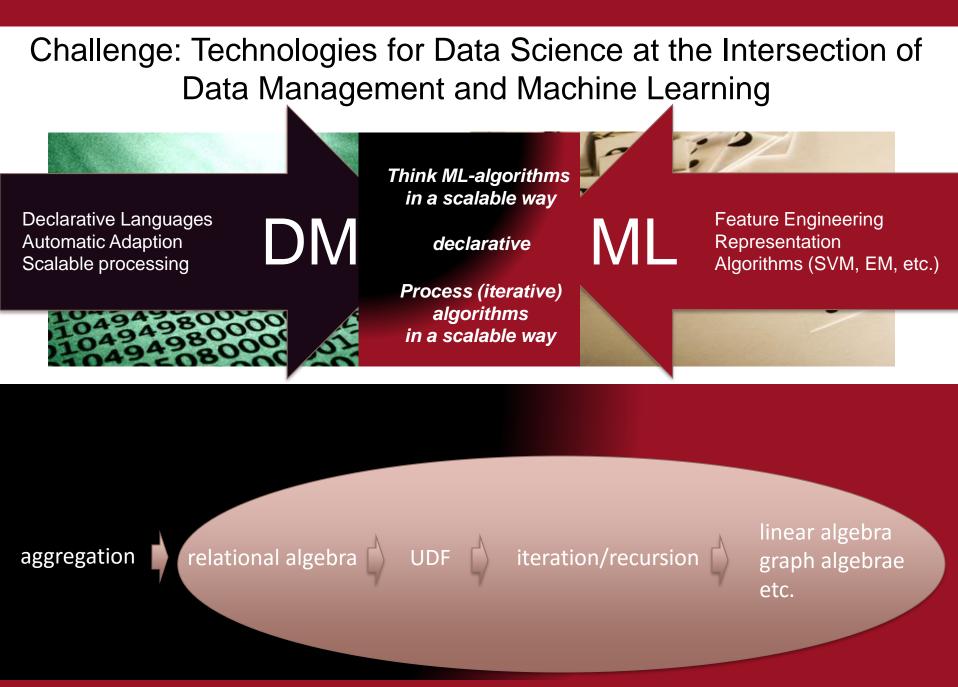


Declarative languages to the rescue!



Many new companies and products are emerging to enable deep big data analysis; strong European contenders include Apache Flink, Parstream, and Exasol.

"New companies" are the (b)leading users of these technologies, e.g., in the information economy (e.g., Zalando, Amazon, Researchgate, Soundcloud, Spotify). **"Traditional Big companies" are following** and still determining strategies (Industrie 4.0, Logistics, Telco, etc.). Most SMEs are not ready yet to capitalize on Big Data.



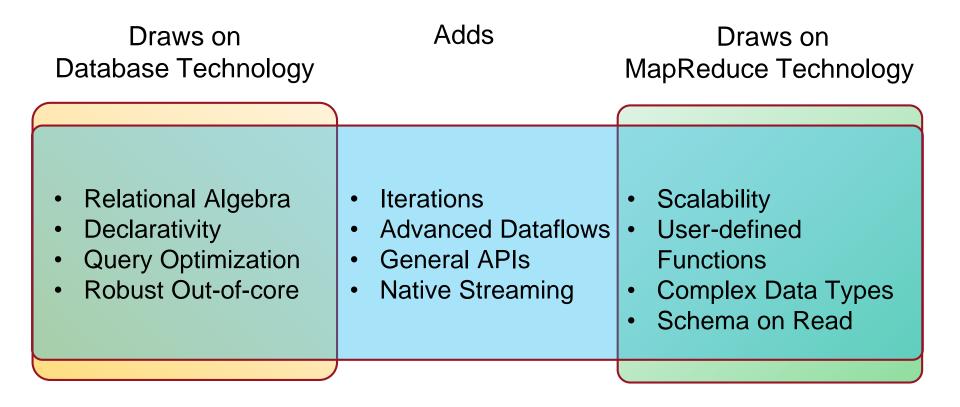
Apache Flink– a success story originating in Berlin

Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, Daniel Warneke: Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. SoCC 2010: 119-130

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, et al: The Stratosphere platform for big data analytics. VLDB J. 23(6): 939-964 (2014)

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, et al : Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38(4): 28-38 (2015)

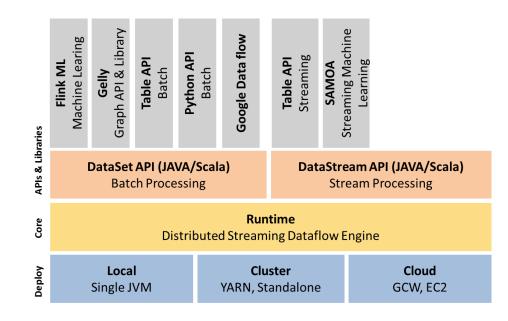
Stratosphere: General Purpose Programming + Database Execution



What is Apache Flink?

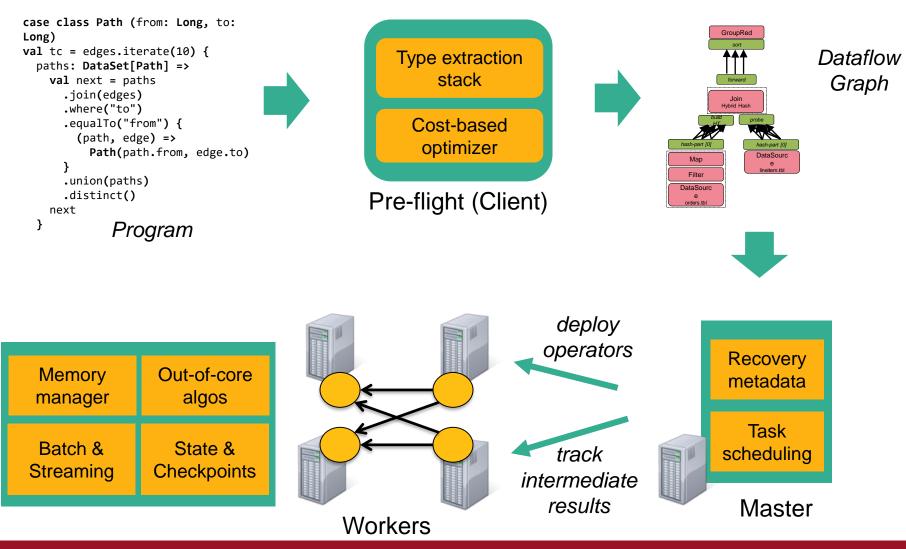
Apache Flink is an open source platform for scalable batch and stream data processing.

- The core of Flink is a distributed streaming dataflow engine.
 - Executing dataflows in parallel on clusters
 - Providing a reliable foundation for various workloads
- DataSet and DataStream programming abstractions are the foundation for user programs and higher layers

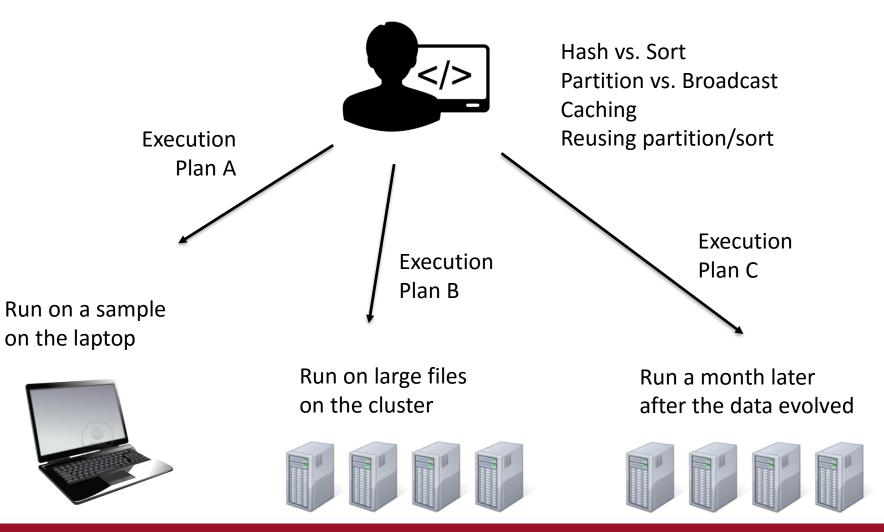


http://flink.apache.org

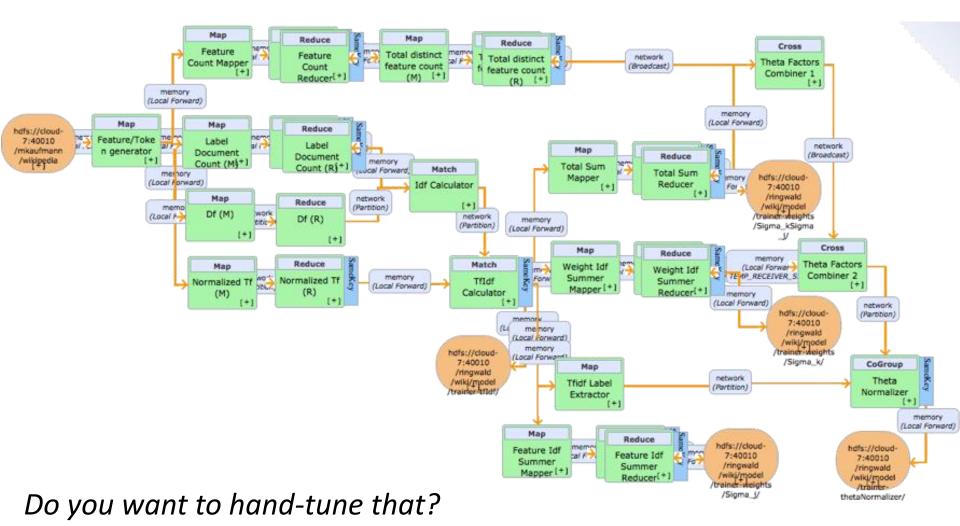
Technology inside Flink



Effect of optimization

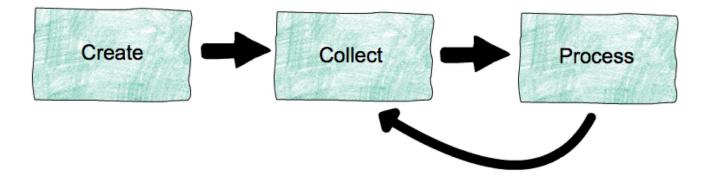


Why optimization ?



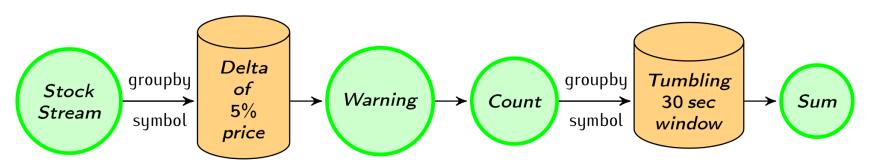
DATA STREAMING ANALYSIS

Life of data streams



- **Create:** create streams from event sources (machines, databases, logs, sensors, ...)
- **Collect:** collect and make streams available for consumption (e.g., Apache Kafka)
- Process: process streams, possibly generating derived streams (e.g., Apache Flink)

Stream Analysis in Flink



case class Count(symbol: String, count: Int)
val defaultPrice = StockPrice("", 1000)

```
//Use delta policy to create price change warnings
val priceWarnings = stockStream.groupBy("symbol")
   .window(Delta.of(0.05, priceChange, defaultPrice))
   .mapWindow(sendWarning _)
```

```
//Count the number of warnings every half a minute
val warningsPerStock = priceWarnings.map(Count(_, 1))
  .groupBy("symbol")
  .window(Time.of(30, SECONDS))
  .sum("count")
```

More at: http://flink.apache.org/news/2015/02/09/streaming-example.html

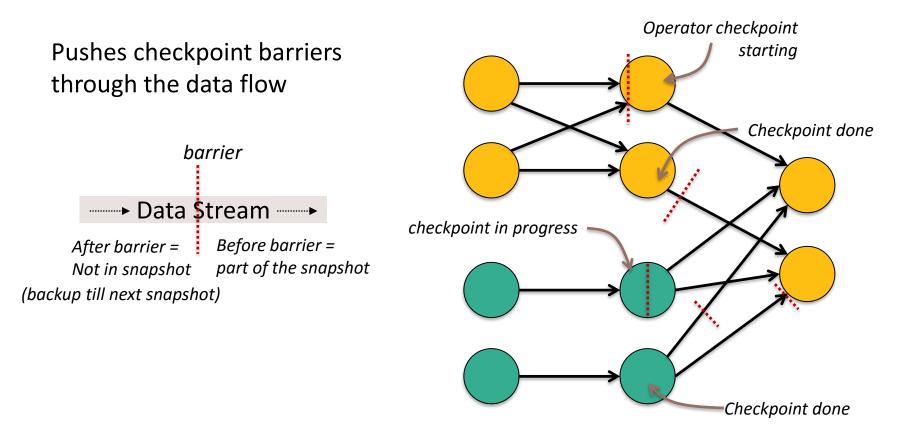
Defining windows in Flink

- Trigger policy
 - When to trigger the computation on current window
- Eviction policy
 - When data points should leave the window
 - Defines window width/size
- E.g., count-based policy
 - evict when #elements > n
 - start a new window every n-th element
- Built-in: Count, Time, Delta policies

Checkpointing / Recovery

- Flink acknowledges batches of records
 - Less overhead in failure-free case
 - Currently tied to fault tolerant data sources (e.g., Kafka)
- Flink operators can keep state
 - State is checkpointed
 - Checkpointing and record acks go together
- Exactly one semantics for state

Checkpointing / Recovery



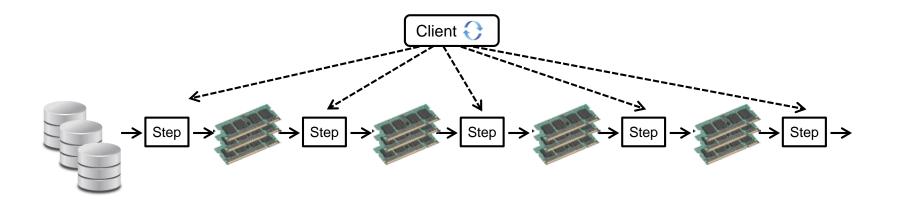
Chandy-Lamport Algorithm for consistent asynchronous distributed snapshots

18

ITERATIONS IN DATA FLOWS → MACHINE LEARNING ALGORITHMS

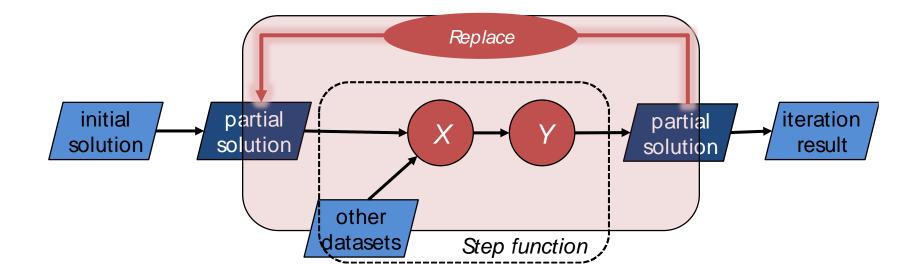
Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, Volker Markl: Spinning Fast Iterative Data Flows. PVLDB 5(11): 1268-1279 (2012)

Iterate by looping



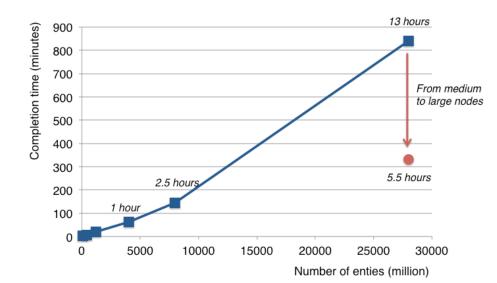
- for/while loop in client submits one job per iteration step
- Data reuse by caching in memory and/or disk

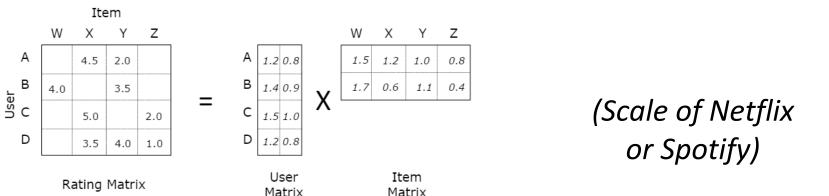
Iterate in the Dataflow



Large-Scale Machine Learning

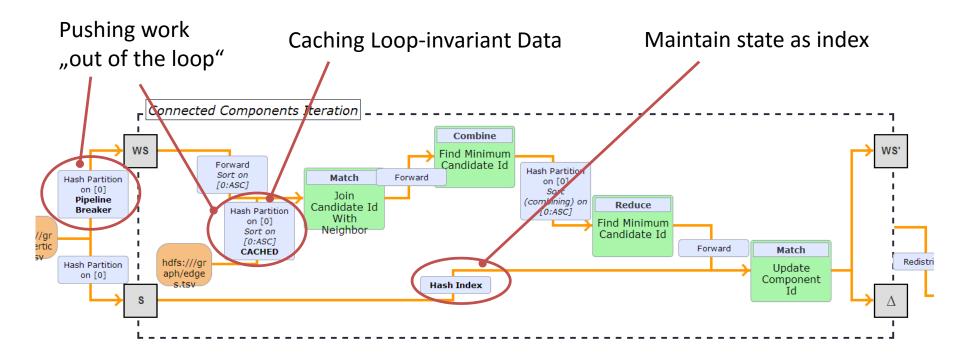
Factorizing a matrix with 28 billion ratings for recommendations





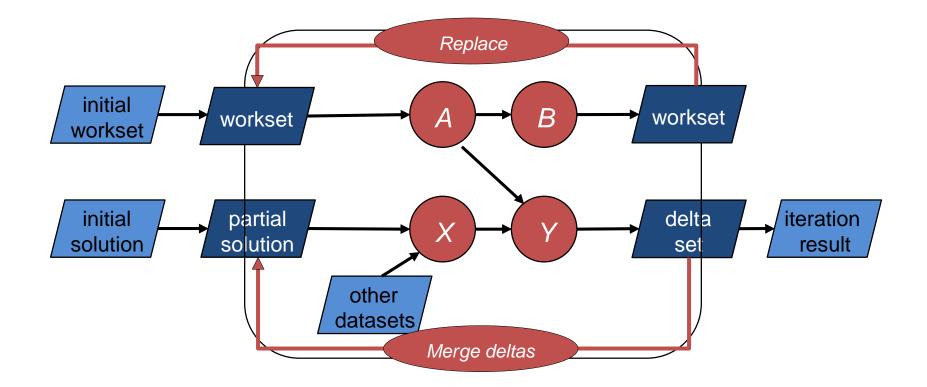
More at: http://data-artisans.com/computing-recommendations-with-flink.html

Optimizing iterative programs

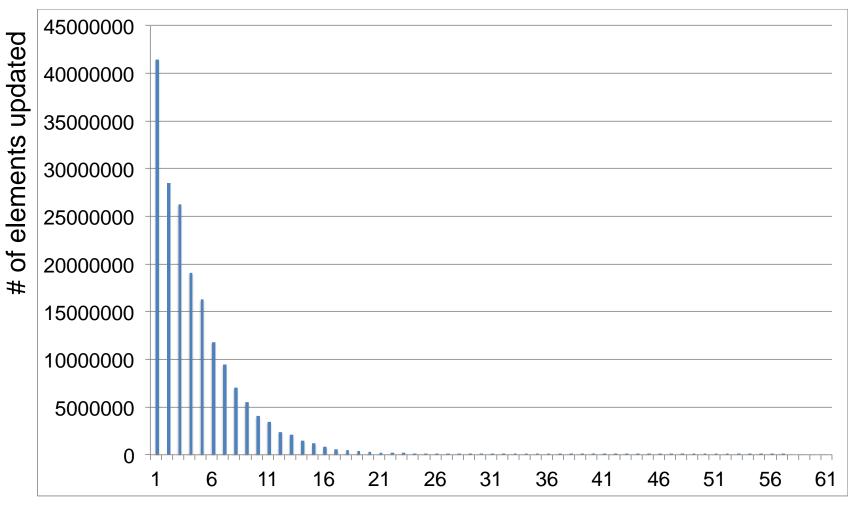


STATE IN ITERATIONS → GRAPHS AND MACHINE LEARNING

Iterate natively with deltas



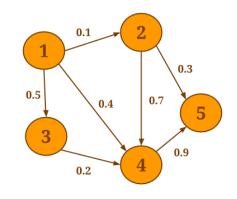
Effect of delta iterations...

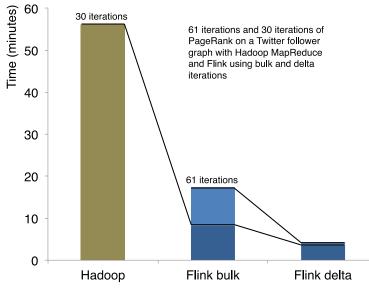


iteration

... very fast graph analysis

Performance competitive with dedicated graph analysis systems

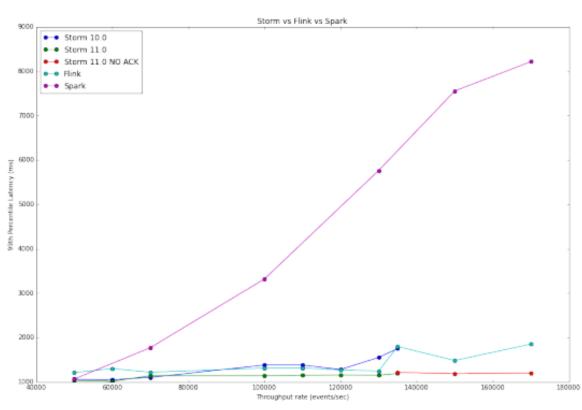




... and mix and match ETL-style and graph analysis in one program

More at: http://data-artisans.com/data-analysis-with-flink.html

Current Benchmark Results

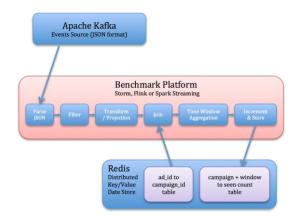


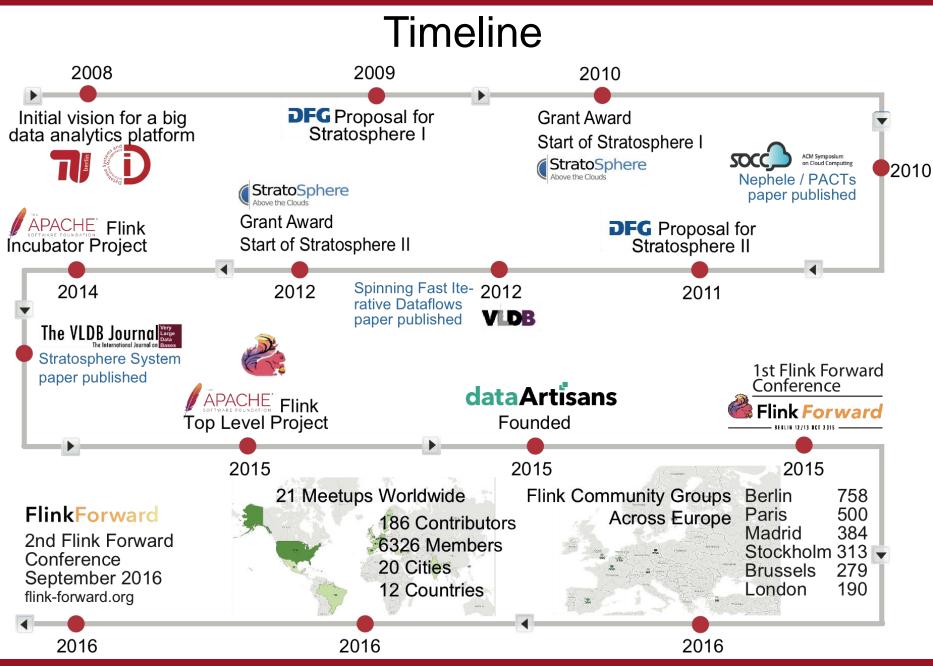
Source: http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

Performed by Yahoo! Engineering, Dec 16, 2015

[..]Storm 0.10.0, 0.11.0-SNAPSHOT and Flink 0.10.1 show sub- second latencies at relatively high throughputs[..]. Spark streaming 1.5.1 supports high throughputs, but at a relatively higher latency.

Flink achieves highest throughput with competitive low latency!

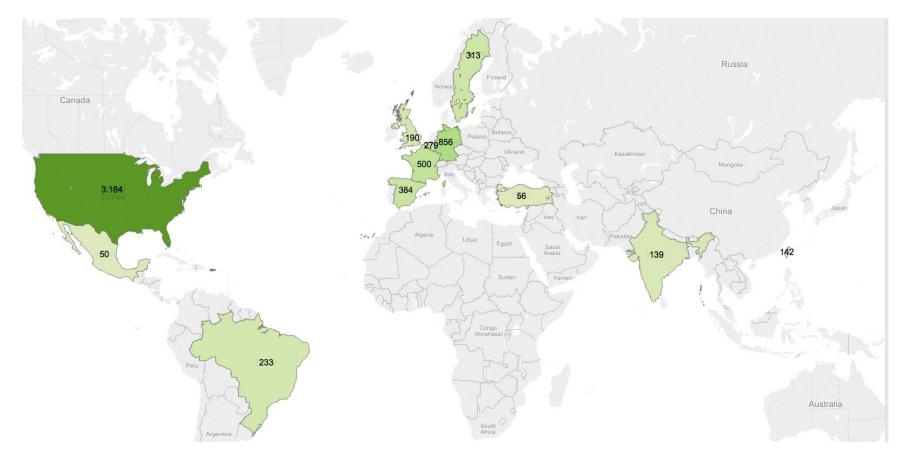




(Strictly) Flink European Meetups with Member Totals (as of 30.5.16)

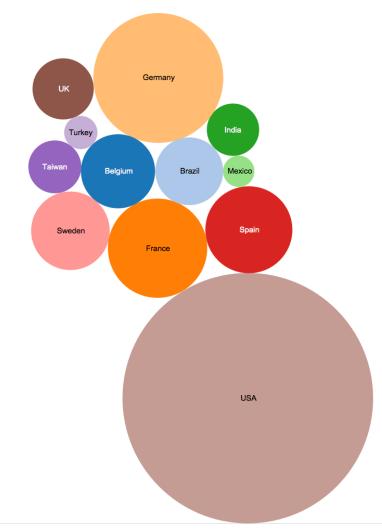
Total Members
758
500
384
313
279
190
98
56

Meetups By Country Concerning Flink



Apache Flink Meetups Worldwide (Data accurate as of 30.5.16) 6326 members *strictly focused on* Apache Flink (comprising 57%) 4771 members *broader in scope*, including Flink (comprising 43%)

Distribution of (Strictly) Flink Meetup Group Members by Country (as of 30.5.16)



Country	Total Members
USA	3184
Germany	856
France	500
Spain	384
Sweden	313
Belgium	279
Brazil	233
UK	190
Taiwan	142
India	139
Turkey	56
Mexico	50

> 6 Software Projects Using Flink

Google Cloud Platform

CLOUD DATAFLOW

A fully-managed cloud service and programming model for batch and streaming big data processing.

٢

Apache Flink is a replacement for MapReduce to support largescale batch workloads and streaming data flows. It eliminates the concept of mapping and reducers and leverages in-memory storage, resulting in significant performance gains over MapReduce.

Apache SAMOA is a distributed streaming machine learning (ML) framework that contains a programing abstraction for distributed streaming ML algorithms.

The Apache Mahout[™] project's goal is to build an environment for quickly creating scalable performant machine learning applications.

Apache MRQL

MRQL is a query processing and optimization system for large-scale, distributed data analysis, built on top of Apache Hadoop, Hama, Spark, and Flink.

Apache Beam is an open source, unified programming model that you can use to create a data processing **pipeline**.

> 10 Research Institutions Using Flink

University of Zagreb

UNIVERSITÄT LEIPZIG

berlin

BERLIN BIG DATA CENTER

Technische Universität Berlin

German Research Center for Artificial Intelligence

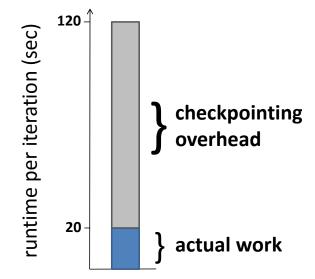
Fault tolerance

Pessimistic Recovery:

- Write intermediate state to stable storage
- Restart from such a checkpoint in case of a failure

Problematic:

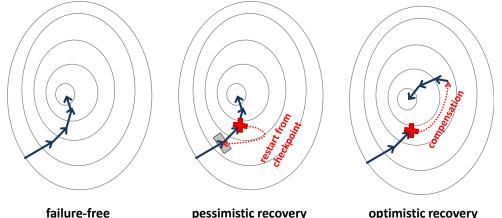
- High overhead, checkpoint must be replicated to other machines
- Overhead always incurred, even if no failures happen!



How can we avoid this overhead in failure-free cases

Optimistic recovery

- Many data mining algorithms are **fixpoint algorithms**
- **Optimistic Recovery**: jump to a different state in case of a failure, still converge to solution



- No checkpoints → No overhead in absense of failures!
- algorithm-specific compensation function must restore state

All Roads lead to Rome

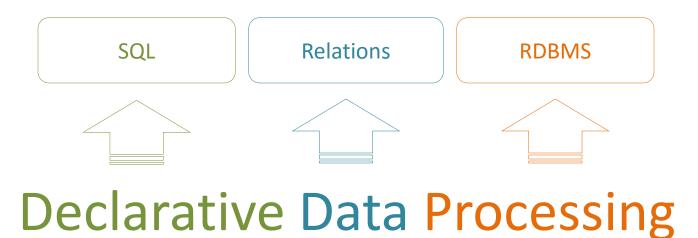
If you are interested more, read our CIKM 2013 paper:

Sebastian Schelter, Stephan Ewen, Kostas Tzoumas, Volker Markl: "All roads lead to Rome": optimistic recovery for distributed iterative data processing. *CIKM* 2013: 1919-1928

Sergey Dudoladov, Chen Xu, Sebastian Schelter, Asterios Katsifodimos, Stephan Ewen, Kostas Tzoumas, Volker Markl: **Optimistic Recovery for Iterative Dataflows in Action**. To appear in *SIGMOD* 2015

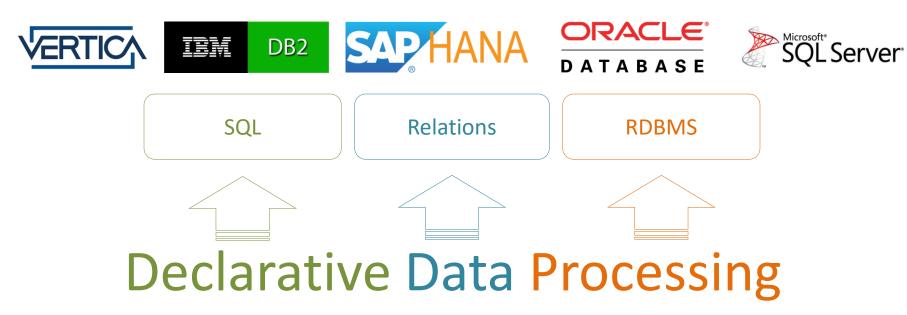
Declarative Data Processing and Big Data

A Billion \$\$\$ Mantra...

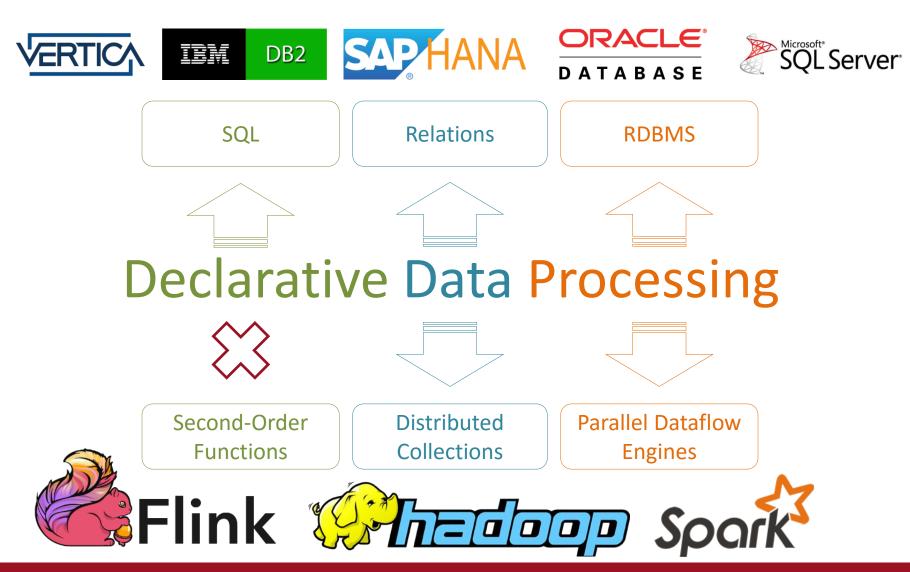


An effective, formal foundation based on relational algebra and calculus (Codd '71). A simple, high-level language for querying data (Chamberlin '74). An efficient, low-level execution environment tailored towards the data (Selinger '79).

With 40+ years of success...



Is Being Revised



Overall Vision & Next Steps

- First results
 - Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, et al: Implicit Parallelism through Deep Language Embedding. SIGMOD Conference 2015: 47-61
 - Alexander Alexandrov, Andreas Salzmann, Georgi Krastev, Asterios Katsifodimos, Volker Markl: Emma in Action: Declarative Dataflows for Scalable Data Analysis. SIGMOD 2016
 - Alexander Alexandrov, Asterios Katsifodimos, Georgi Krastev, Volker Markl: Implicit Parallelism through Deep Language Embedding. SIGMOD Record 45(1): 51-58 (2016)
- Next Steps (Fall 2016)
 - Open-Source Release
- Vision (Frontend): Multi-model DSL based on type contracts
 - Collection Processing DataBag[A]
 - Linear Algebra
 Matrix[A], Vector[A]
 - Stream Processing
 Stream[A]
- Vision (Backend): Target more execution engines
 - Column Stores
 - GPUs

Thanks to my team members and students

- Dr. Stephan Ewen
- Sebastian Schelter
- Dr. Kostas Tzoumas
- Dr. Asterios Katsifodimos
- Fabian Hüske
- Alexander Alexandrov
- Max Heimel

and many more members of the Stratosphere Project, the Berlin Big Data Center, and the Apache Flink community

Evolution of Big Data Platforms

