Selection effects	Shape models	TPM	Results	Summary
000	0	0	000000000	0

Filling the gap Asteroids with slow rotation in thermal infrared

A. Marciniak¹, V. Alí-Lagoa, T. Müller, P. Bartczak
R. Behrend, M. Butkiewicz-Bąk, G. Dudziński, R. Duffard, K. Dziadura,
S. Fauvaud, S. Geier, J. Grice, R. Hirsch, J. Horbowicz, K. Kamiński,
P. Kankiewicz, D.-H. Kim, M.-J. Kim, I. Konstanciak, V. Kudak, L. Molnár,
F. Monteiro, W. Ogłoza, D. Oszkiewicz, A. Pál, N. Parley, F. Pilcher, E. Podlewska -Gaca, T. Polakis, J. J. Sanabria, T. Santana-Ros, B. Skiff, K. Sobkowiak,
R. Szakáts, S. Urakawa, M. Żejmo, K. Żukowski

1. Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Poznań, Poland.

(日)

Selection effects Shape models		TPM	Results	Summary
•00	0	0	000000000	0

Selection effects in MBA models

Selection effects	Shape models	TPM	Results	Summary
000	0	0	000000000	0

Selection effects in fainter MBA models

Marciniak et al. 2018

Selection effects

Shape models

TPM O Results 00000000 Summary O

Selected lightcurves

・ロット (雪) (日) (日)

3

Fitting the shape models to stellar occultation chords

Diameters of equivalent volume sphere: CONVEX (2011): 72 \pm 4 km; CONVEX (2013): 74 \pm 5 km SAGE (2011): 70 \pm 4 km; SAGE (2013): 72 \pm 3 km

Marciniak et al. 2018

Selection effects	Shape models	TPM	Results	Summary
	O	O	000000000	O
Thermophysical modelling				

Insolation and surface temperature distribution: (159) Aemilia

O-C plots for (159) Aemilia model applied in TPM

Selection effects	Shape models	TPM	Results	Summary
000	0	0	00000000	0

Target	Rotation period [h]	Taxonomic type	Radiometr Diameter [km]	ic solution f Albedo	or combined data. Thermal inertia [Jm ⁻² s ^{-0.5} K ⁻¹]
159 Aemilia	24.4787 ±0.0001	Ch	137 ±8	0.054 ±0.015	50 ±50
227 Philosophia	26.4614 ±0.0001	С	101 ±5	0.041 ±0.005	125 ±90
329 Svea	22.7670 ±0.0001	С	78 ±4	0.055 ±0.015	75 ±50
478 Tergeste	16.10312 ±0.00003	L	87 ±6	0.15 ±0.02	75 ±45
487 Venetia	13.34133 ±0.00002	S	70 ±4	0.21 ±0.02	100 ±75

Marciniak et al. 2018

Selection effects	Shape models	TPM	Results	Summary
000	0	0	00000000	0

Thermal inertia of Main Belt Asteroids

Selection effects	Shape models	TPM	Results	Summary		
000	0	0	000000000	0		
Thermal inertia of alow ratetore						

I nermal inertia of slow rotators

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト ъ

Thermal lightcurve fit to WISE W4 data (target: 673 Edda)

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ●

Selection effects	Shape models	TPM	Results	Summary
000	0	0	0000000000	0

O-C plots for (673) Edda model applied in TPM

Selection effects	Shape models	TPM	Results	Summary
000	0	0	0000000000	0

Summary of TPM results for (673) Edda.

Shape model	IR data subset	$\bar{\chi}_m^2$	$D\pm 3\sigma$ (km)	Γ \pm 3 σ (Slu)	Roughness (rms)
AM 1	All data	0.47	38 ⁺⁶	3 ⁺⁶⁷	Medhigh (0.50)
AM 1 sphere	All data	1.83	38	5	Medhigh (0.39)
AM 2	All data	0.59	38 ²⁺	3 ⁺³⁷	Extr. high (1.0)
AM 2 sphere	All data	1.76	38	10.	Medium (0.44)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Selection effects	Shape models	TPM	Results	Summary
000	0	0	00000000000	0

	Rotation		Radiometric solution for combined data.			
Target	period	Taxonomic	Diameter	Albedo	Thermal inertia	
	[h]	type	[km]		[SI units]	
100 Hekate	27.07027	S	87^{+5}_{-4}	$0.22^{+0.03}_{-0.03}$	4^{+66}_{-2}	
	± 0.00006					
109 Felicitas	13.190550	Ch	85^{+7}_{-5}	$0.065^{+0.008}_{-0.01}$	40^{+100}_{-36}	
	± 0.00004					
195 Eurykleia	16.52178	Ch	87^{+11}_{-9}	$0.06 {\pm} 0.02$	15^{+55}_{-15}	
	± 0.00002					
301 Bavaria	12.24090	С	55^{+2}_{-2}	$0.047^{+0.004}_{-0.003}$	45^{+60}_{-30}	
	± 0.00001		_			
335 Roberta	12.02713	В	98^{+10}_{-11}	$0.046^{+0.014}_{-0.008}$	unconstrained	
	± 0.00003					
380 Fiducia	13.71723	С	72^{+9}_{-5}	$0.057^{+0.009}_{-0.012}$	10^{+140}_{-10}	
	± 0.00002					
468 Lina	16.47838	CPF	69^{+11}_{-4}	$0.052^{+0.006}_{-0.014}$	20^{+280}_{-20}	
	± 0.00003					
538 Friederike	46.739	С	77^{+4}_{-2}	0.06±0.01	10^{+25}_{-10}	
	± 0.001		_			
653 Berenike	12.48357	К	46^{+4}_{-2}	$0.18^{+0.02}_{-0.03}$	40^{+120}_{-40}	
	± 0.00003					
673 Edda	22.33411	S	38^{+6}_{-2}	$0.13^{+0.03}_{-0.05}$	3^{+67}_{-3}	
	± 0.00004		_		-	
834 Burnhamia	13.87594	GS	67^{+8}_{-6}	$0.074^{+0.014}_{-0.016}$	20^{+30}_{-20}	
	± 0.00002		0	0.010	20	

◆□▶◆圖▶◆臣▶◆臣▶ 臣 の�?

			O
	Ŭ	000000000	Ŭ

Thermal inertia normalised to 1 AU vs. size

Selection effects	Shape models	TPM	Results	Summary
	O	O	000000000	•
Summary				

- Selection effects: spin and shape models mainly available for short-period, elongated asteroids with extreme obliquities
- Biased spatial spin axis and size-frequency distributions, lack of detailed models for slow rotators
- Our targeted survey of 100 long-period, low-amplitude MB asteroids. Gathered over 10 000 hours of lightcurve data in 20 stations worldwide (+ Kepler).
- Modelled 16 targets from this sample, scaled by TPM using IR data from IRAS, AKARI and WISE
- Found high, medium and very low thermal inertias
- Differences due to sub-surface temperatures and different material properties?
- Indication of fresh and old surfaces connected with formation age and/or size?

This work was supported by grant no. 2014/13/D/ST9/01818 from National Science Centre, Poland.

The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.

