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- Approximate field of view of MARA, 

steographic reconstruction of the 3D 

shape of the boulder is in progress 
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Temperature Measurement Uncertainty 

 Brightness temperatures have bee calibrated using all in-flight data during cruise as well as the deep space views 

during on-asteroid operations. 

 The 8-12 µm filter was found to be the best performing filter 

 In general, brightness temperature errors are <1 K during daytime, but grow large for the narrow bandpasses during 

nighttime. 
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- The illumination model has been calculated 

based on the location of MASCOT at -22.30°N, 

317.13°E 

 

- The orientation of the observed surface with 

respect to the local landing site orientation is 

unknown 

 

- Orientation of the surface normal is varied by 

±25° around the nominal surface normal.  

 

- Illumination is calculated by 𝐼𝑚𝑎𝑥 ∙ 𝑛𝑓𝑎𝑐𝑒𝑡 ∙ 𝑣 𝑠𝑢𝑛 

 

- Sunrise and sunset have been adapted to fit the 

GNC sensors and the temperature data 

 

 

Illumination Model 
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Thermal Inertia - Best Fit 

 

- Data is fitted for nighttime 

temperatures after 11:00 UTC 

 

- Excellent fit during nighttime 

 

- Modelled daytime temperatures are 

higher than the observed ones 

 

- This can be a roughness effect 
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Thermal Inertia - Roughness 

- Roughness reduces the daytime 

fluxes for the MARA viewing 

geometries 

 

- We use a simple roughness model 

using spherical cavities 

 

- The model takes the viewing 

geometry into account but not  

vertical heat conduction  
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Thermal Inertia Estimate 

- Besides the various possible surface 

orientations, emissivity was varied 

from 0.9 to 1 and thermal radiation 

from the was modeled or ignored 

 

-  for each of the above  cases thermal 

inertia is fitted to the data, shown are 

those combinations with a sufficiently 

low 𝜒2 
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Thermal Inertia Estimate 

- The assumed emissivity has a small 

influence on the obtained results 

 

- Acceptable fits result in thermal inertia 

ranging from 247to 375 J m-2 K-1 s-1/2  

with a best fit for 282 J m-2 K-1 s-1/2  

and an emissivity of 1 
 

ε = 0.9 

ε = 1 
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Thermal Inertia Estimate 

 

- Thermal radiation of the surrounding 

terrain will systematically increase 

temperatures throughout the day 
 

- Assuming 8% view factor to 

surrounding, ambient temperature 

same as observed brightness 

temperature, retrieved thermal intertia 

decreases down to 247 J m-2 K-1 s-1/2  
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Thermal Inertia Estimate 

 

- Thermal radiation of the surrounding 

terrain will systematically increase 

temperatures throughout the day 
 

- Assuming 8% view factor to 

surrounding, ambient temperature 

same as observed brightness 

temperature, retrieved thermal intertia 

decreases down to 247 J m-2 K-1 s-1/2  

 

- Estimated thermal inertia range is a 

upper limit, stronger thermal radiation 

from the evironment would decrease 

the estimate 
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Estimated Thermal Conductivity and Porosity 

- Assuming a grain density typical for CI 

meteorites, s = 2420 kg m-3, and a model 

of 𝑐𝑝 we derive thermal conductivity 𝑘 𝜙  

from thermal inertia 

 

- Comparison to three models of thermal 

conductivity based on meteorite samples 

to derive thermal conductivity and porosity 

of Ryugu 

 

- Large gap in the data for C chondrites 



Lab Work -Thermal Conductivity Measurement Setup 
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Coldfinger 

-150 to +50°C Sample Container 

Transient Hot Strip 



Summary and Conclusions 
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- MARA observed a full day-night at MASCOT site 2, looking at a 

boulder in its field of view 

 

- The best fitting thermal inertia of the boulder as derived from nighttime 

data is 282−35
+93J K-1 m-2 s-1/2 

 

- The estimate will be refined considering thermal re-radiation, probably 

extending the lower errorbar 

 

- Current TI estimates indicate a highly porous boulder with  = 28 - 46% 

 

- The low TI of small bodies may be unrelated to regolith cover. Rather, it 

could reflect the high porosity of surface boulders 

 

- We still need thoroughly investigate re-radiation and roughness when 

more 3D data is available from MASCAM 

 

 


