Seasonal variation of radial brightness contrast of Saturn's rings viewed in mid-infrared by COMICS

Fujiwara et al. 2017, A&A, 599, A29

Hideaki Fujiwara Subaru Telescope, NAOJ

Collaborators: Ryuji Morishima (UCLA/JPL), Takuya Fujiyoshi, Takuya Yamashita (NAOJ)

Planetary Rings: Miniature of dusty debris disks?

- Disk structure by solid particles
- Gas-free or gas-less system
- Probably generated by collisions

Saturn's Rings

C ring (τ~0.1) Cassini Division $(\tau^0.1)$

B ring (τ~1—5)

- Made from Icy Particles
- In visible light: sun light reflected on ring particles
- Optically thick A & B rings much brighter; optically thin C ring & Cassini Division fainter
- How the rings look in thermal emission?

Data

- MIR Camera COMICS on Subaru Telescope with 8.2 m Primary Mirror on Maunakea
- Multi-wavelength Imaging at 8.8, 9.7, 10.5, 11.7, 12.5, 17.7, 18.8, 20.5, 24.5 μm
- Observed in 2008/1/23 by G. Orton, L.
 Fletcher et al. (unpublished)
- Almost edge-on rings to observer/Sun

Subaru Telescope

Astrometrical parameters

Epoch	r	Δ	<i>B</i> ′	В	α
(UT)	(au)	(au)	(deg)	(deg)	(deg)
January 23, 2008	9.27	8.45	-8.7	-7.2	3.5
S	un-Satu	Irn	Solar El.	P	hase Ang
	Earth-Saturn (above ring plane) Earth El.				

Ring Brightness

Spatial Res: 0.38-0.67" = a few 1000 km (<u>Highest-ever in MIR from ground</u>)

Comparison w/ visible image

- Compared with visible image by Ishigakijima Obs.
- C ring and Cassini Div. are brighter than B and A rings in MIR while C rings and Cassini Div. are always fainter in visible
- Ring brightness contrasts in MIR and visible are reversed

SEDs of Rings

- Blackbody peaking at > 25 μ m
- No significant dust features

Wavelength (µm)

Ring Temperatures

- SED fit w/ BB (assuming τ , measured from stellar occultation) \bullet \rightarrow Physical Temperature of Ring Particles
 - Brightness $I_{\nu}(\lambda) = \beta B_{\nu}(\lambda,T)$
 - Filling Factor $\beta = 1 \exp(-\tau/|\sin B|)$

Region	Ring	T by COMICS (K)						
		$\tau = 0.05$	0.1	0.2	0.5	1	2	Eas
0	A ring (East)	_	-	80	78	78	_	Mår
1	Cassini Division (East)	97	91	87	_	_	_	
2	B ring (East)	_	_	_	82	82	82	
3	C ring (East)	102	97	92	_	_	_	
4	C ring (West)	105	100	95	_	_	_	
5	B ring (West)	_	_	_	84	84	84	
6	Cassini Division (West)	99	93	89	_	_	_	- ↑ □ - ↓ ♪ □
7	A ring (West)	_	_	82	80	80	_	EVe
								//e

ing ng

- C ring & Cassini Div. warmer than B, A rings \mathbf{O}
- West side warmer than east side in each ring

Discussion

- 1. In the MIR, optically thin C ring and Cassini Div. were brighter than optically thick A & B rings in 2008
- 2. Temperatures in C ring and Cassini Div. were higher than A & B rings
- 3. West side is generally warmer than the east over the rings
 - Accounted for by eclipse cooling in Saturn's shadow (E=morning, W=evening)

- (1) & (2) related to each other
- Surface Brightness in Thermal Emission: $I_v(\lambda) = \beta B_v(\lambda,T)$
- Filling factors in C ring and CD were lower than A & B rings
- BUT, effect of higher temperatures in C & CD overcome lower filling factors

Variation from 2005 to 2008

• Compared with data in 2005 April, when ring opening was larger

Epoch	r	Δ	<i>B</i> ′	В	α
(ŪT)	(au)	(au)	(deg)	(deg)	(deg)
January 23, 2008	9.27	8.45	-8.7	-7.2	3.5
April 30, 2005	9.07	9.33	-21.9	-23.6	6.1
	(above ring plane)				
	Solar El.			Earth E	l. –

- Contrast reversed in 2005-2008
- Could be explained by change in filling factors
- Larger opening angle makes larger contrast in optical depths
- C ring & CD fainter

(See Fujiwara et al. 2017 A&A for quantitative discussion) ¹⁰

Temporal Variation in Filling Factors

larger contrast in filling factor

Summery

- MIR image of Saturn from Subaru/COMICS
- Measurement of Ring Brightness & Temperatures (Highestever spatial resolution from the ground)

- C ring and Cassini Div. were warmer than B and A rings

- In 2008 C ring and Cassini Div. were brighter than B and A rings (opposite contrast to visible light)
- MIR Brightness Contrast became inverse from 2005 to 2008
- Observed temporal variation in the MIR brightness contrast is interpreted as a result of a seasonal effect with changing elevations of the Sun and observer above the ring plane