

Michael "Migo" Mueller U. Groningen (Netherlands)

Lenka Husárová, Bernhard Brandl

TU Delft (Netherlands)

Overview

- JWST & MIRI
 - Capabilities
 - Timeline, deadlines
- Asteroid Serendipity

• Super-WISE? 🕲

James Webb Space Telescope (JWST)

- Infrared space observatory
 - Aperture 6.5m
 - Mid-infrared instrument: MIRI
 - Launch: Mar 2021
 - GTO and ERS programs are public

– Expect a new General Observer call next year, then yearly (5–10 years?!)

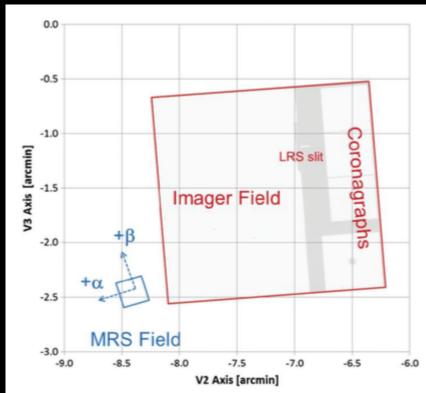
Mid-Infrared Instrument (MIRI)

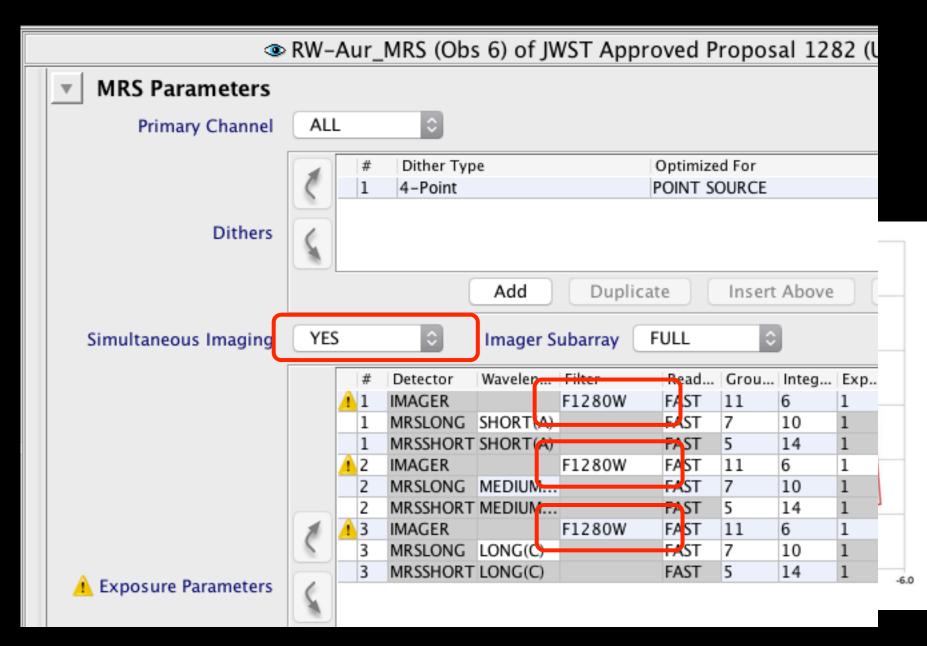
- Imaging + spectroscopy, 5—28 μm
 - See https://jwst.nasa.gov/mini.html http://www.miricle.org/
 - Thermal imaging of practically any asteroid...
 - LRS (R~100, 5—12 μm), MRS (R~3,000, 5—28 μm)
 - I'm part of the team ask me any question!
 - MIRI simulator:

http://miri.ster.kuleuven.be/bin/view/Public/ MIRISim_Public

Asteroid Serendipity

- Asteroids are very bright @ MIR → MIRI will see many, like it or not!
- But then, FOV is only 74"x113".
- Not a survey telescope, but will go MUCH deeper than, say, WISE.

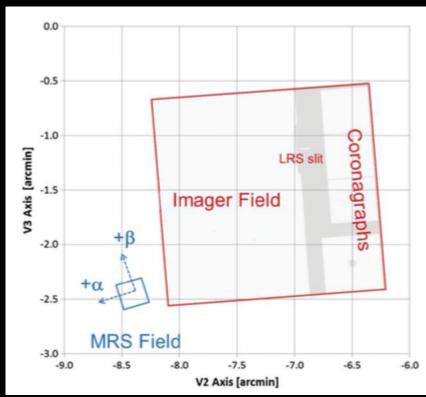

Data public after one year.
But how many asteroids will MIRI see?


SIMO

"Simultaneous Imager MRS Observations"

 During MRS obs, can image a nearby field at zero overhead (!).

 Please use filter 1280W! (best for asteroids)



SIMO

"Simultaneous Imager MRS Observations"

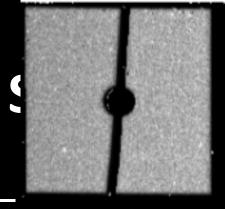
 During MRS obs, can image a nearby field at zero overhead (!).

 Please use filter 1280W! (best for asteroids)

• Picked one GTO program (#1282, targeting debris disks) with 55 MIRI-MRS observations

- For times when observable: check which asteroids (if any) are inside MIRIM FOV
 - https://ssd.jpl.nasa.gov/x/ispy.html
 - MIRIsim

 Picked one GTO program (#1282, targeting debris disks) with 55 MIRI-MRS observations


- For times when observable: check which asteroids (if any) are inside MIRIM FOV.
 - Preliminary result: 4.2% chance of having a currently known asteroid inside FOV.

 Preliminary result: 4.2% chance of having a currently known asteroid inside FOV

- Estimated brightness (NEATM), assumed p_v = 6%, 20%
- → MIRIsim to simulate streaks
- \rightarrow SNR >> 10 in practically all cases

M.Muell

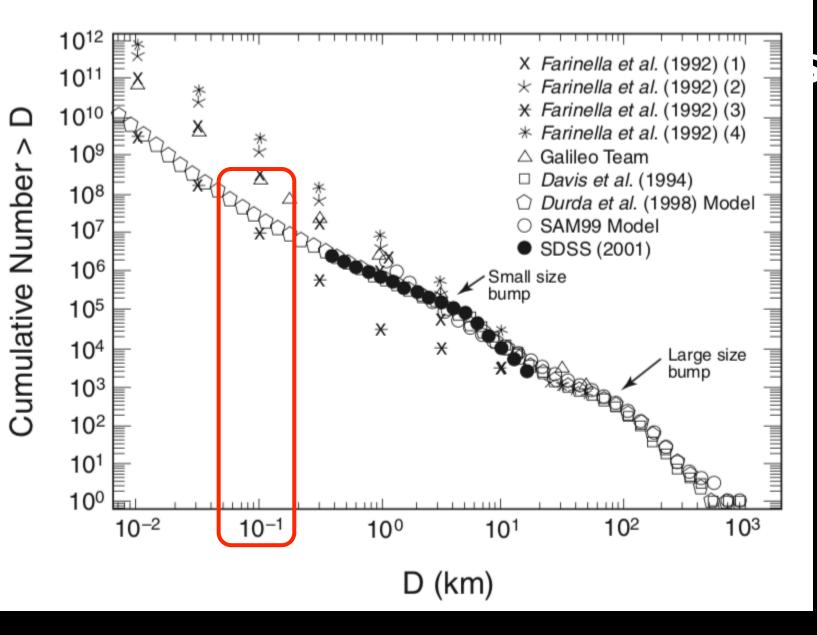
.

14

12

1

 Preliminary result: 4.2% chance of having a currently known asteroid inside FOV


 Total asteroid yield (currently known MBAs): 5 years / (1.7 hr/obs) * 25% * 75% * 4.2% ~ 200

- Assume: MIRI on 25% of time; MIRIM 75% of that

 Preliminary result: 4.2% chance of having a currently known asteroid inside FOV

- Total asteroid yield (currently known MBAs): 5 years / (1.7 hr/obs) * 25% * 75% * 4.2% ~ 200
- This is not super-WISE! It's not the whole story, either.

- We'll see many more asteroids those that haven't been discovered, yet!
 - MIRI is much more sensitive to asteroid flux than current optical surveys.
- Extrapolation: we're sensitive to all MBAs down to D~120m (preliminary result)

From Davis et al. (2002; Asteroids III)

Sensitive down to D~120m (preliminary)

- Extrapolating SFD: ~30e6 D>120m asteroids
- ~800,000 of them known today
- \rightarrow ~2.7% complete

- Sensitive down to D~120m (preliminary)
- \rightarrow ~2.7% complete
- Total yield expected: 200/2.7% ~ 7,500 MBAs
 97% of these currently unknown, sub-km size

• Is this super-WISE?

Conclusions

• JWST to launch in Mar 2021. MIRI is great for thermal work! Annual GO calls starting 2020.

 Over 5 year lifetime (requirement), MIRIM detects ~200 MBAs known today (small FOV)

 Will detect ~7,000 more unknown MBAs (D < 1km; high sensitivity)

Conclusions

• JWST to launch in Mar 2021. MIRI is great for thermal work! Annual GO calls starting 2020.

 Will detect ~7,000 more unknown MBAs (D < 1km; high sensitivity)

 Looking into data reduction for trailed observations w/ non-destructive read-outs...

Conclusions

• JWST to launch in Mar 202 MIRI is great for thermal work! Annual Collis starting 2020.

 Will detect ~7,00 Gore unknown MBAs (D < 1km; higk sensitivity)

 Looking into data reduction for trailed observations w/ non-destructive read-outs...